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1. INTRODUCTION

The well-known sampling theorem (currently ornamented by about a
dozen prominent names, see, e.g., [1,2,9], and of eminent actual interest
in applied signal processing) states that any function (signal) f, the Fourier
transform of which has symmetric finite support (i.e., f is bandlimited to)
[ -wn, wn], can be completely reconstructed from its values (samples)
f(k/w), equally distributed over the real (time) axis, in terms of the car
dinal (sampling) series

n (k)f(t)= k=Lnf ~ sincn(wt-k) (I)

Its kernel is the famous sinc-function (i.e., sinus cardinalis)

sinc x := x - I sin x, sinc 0 := 1 (0"" X E IR).

During the past hundred years or so many attempts have been made to
generalize (1) in a purely mathematical as well as in a practical engineering
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(2 )

sense. For example, concerning functions which are not a prton band
limited it has been shown that

'-f. (k)
f(t) = (!~mf b L xl ; sine n(wt - k);

see [5, 17] as well as [18], the latter giving an extensive list of references
with respect to relation (2). Several investigations have also been made by
exchanging the sine-function in (2) to achieve better rates of convergence;
see, for instance, [16]. Nevertheless a considerably large number of sam
ples have to be taken into account. This disadvantage can be overcome by
replacing the sine-function by timelimited kernels. In this respect there is a
recent general (equivalence) result for generalized sampling series due to
Ries and Stens [12].

The purpose of this paper is to restate just an extraction of this theorem,
in particular for timelimited kernels, and to construct, mainly as a
straightforward application, a simple family of kernels which are optimal
(in an almost trivial sense) and which, at the same time, need a minimal
number of samples (what is essential for practical purposes). Thus these
examples should be not only of inner-mathematical interest but also good
enough for real engineering implementation. It might be worthwhile to
point out that, apart from familiar ingredients, "central factorial numbers"
play an intrinsic part in the proofs.

2. A SAMPLING THEOREM EQUIPPED WITH HIGH ORDERS

If the Fourier transform pair (for suitable functions of course) IS

represented by

q/ (v) = 2
1
nr

u

ep(x) e ilx dxc-o ep(x) = r
x

epA (v) eilxdv,

the appropriate version of the above mentioned general theorem may be
formulated as follows.

PROPOSITION. Let ep E C( IR) have finite support [- (J, (J J, (J E IR + with
2(J EN, and let there exist r EN, r ~ 2, such that for epA and its derivatives it
holds that

DJepA(2kn) =0, 1~j~r-l

(k E Z),

(j EN).

(3 )

(4)
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Then for fE c(r) (~) it follows that
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the maximal number of terms in the sum is exactly 20-, the right-hand con
stant being explicitly given (roughly) by

(6)

(As usual, the Gaussian brackets [x J denote the largest integer ~ x E R)
The proof proceeds via a known technique using the Poisson summation

formula (see, e.g., [4, pp. 201; 194J): for AE Z, 0 ~ A~ r - 1,

x oc

L (u-k);cp(u-k)= L (-i)'-n;'q{(2kn)e- i2knu

k= -oc'

(UE ~).

It is read off that conditions (3) and (4), respectively, are equivalent to

xc

I cp(u-k)= 1,
k = -if.'

ex)

I (u-k)icp(u-k)=O
k= ,1:-

(1 ~j~ r -1).

Hence the Taylor series expansion

(k) _r-1fU)(t) (k )if - - L -.,- - - t
w i=O)' W

+pr)(o (k _ wtY w- r
r!

(~= ~(k, w, t))

immediately leads (note vanishing terms) to

k=I 00 j(~) cp(wt-k) - j(t)

00 j(r)(,,)
=w- r I _,_I, (k-wt)' cp(wt-k).

k~ -00 r.

Indeed, since cp(x) =0, x f/:. [ - 0-, 0- J, both infinite series reduce to finite
sums with generally 20- terms and [wt - 0- J+ 1~ k ~ [wt + 0- J; only in the
boundary case with (wt - 0-) E N one further term cancels out. Finally,
assertion (5) is an easy consequence, the constant of (6) being derived from

2a

I I[wt- o-J +}, - wtlr!cp(wt - [wt - o-J - A)I
}=]

noting that I[wt - o-J - wt + AI ~ 0-, A= 1, 2, ..., 20-.
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Summarizing: this sampling theorem with arbitrarily increasmg
approximation order O(co '), co -> 00, r;?: 2 needs just the very restricted
number of at most 20" samples (provided the time limit 0" is small enough).
In fact, it will be shown that there exist (simple) sampling kernels cp which
satisfy the foregoing proposition, and that for small 0".

3. REALIZAnON

Let i, nEN, and for 1~i~n let PiE N such that 2~Pl <P2< ... <Pn'
in short fz := (PI, P2 ,..., Pn)' For Yi E ~, Y := (y I' Y2 ,... , Yn), define the linear
combination r/Jn of n (central) B-splines by

n

r/Jn(x) == r/Jn(x; fz; Y) := L YiMp,(X)
i= I

(XE ~) (7)

these basic splines being given as the Fourier transforms of the powers of
the sinc-function (in other words, of the general Jackson-de La Vallee
Poussin kernels [20] of the theory of singular integrals on the line),
namely,

I rx
( t)nMn(x):=;-J

o
sinc2" cos xt dt (n;?:2)

I
1 [(nI2) - Ixll k (n)(n )n - I

_ (n-I)! k~O (-1) k 2"-lxl-k ,

0,

n
Ixi ~2"'

(8 )

see, e.g., [7; 8, p. 457, misprint!]. Thus, as is well known (see, e.g., [14,
p. 11 fJ), Mn has symmetric finite support [- n12, nl2 J, is a piecewise
polynomial of degree n - 1 on that interval, and has a continuous derivative
of order n - 2.

Since by the inverse Fourier transform

rxo ( u)nM;(u) = 2 J
o

Mn(x) cos ux dx = sinc 2"

the transform of (7) is given by

n ( U)P'r/J~(v) == r/J~(u; fz; Y) = i~1 Yi sinc 2" .

(UE ~) (9 )

(10)

The purpose now is to determine the n-tuple of coefficients Y such that
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the conditions of the proposition are satisfied for the actual transform pair
¢Jn' ¢J:. In this respect there is

THEOREM 1. For (10) there holds the Taylor series expansion

1 n

¢J:(v; fz; Y*) = 1- 23n . 3n . n! 11 PI" v
2n

1'~1

+O(V2n + 2) (v ...... O)

(with all but the first of the initial coefficients vanishing) if and only if

(11 )

(l~i~n) (12 )

(the prime indicating that the index J1 = i is to be excluded). Moreover, with
respect to the zeroes of (10) itself, there holds

v = 2kn (k E 7L) (13 )

and, concerning the zeroes of the corresponding derivatives,

j < min {p I , 2n } .
. . { } (j EN; k E 7L). (14 )

J=mlll Pl,2n

(For all proofs, here and in what follows, see Sect. 5.) Thus conditions (3)
and (4) on q/ are fulfilled for ¢J:, and that with r = min {PI' 2n }.

Now, with y* of (12) a particular combination (7) is selected as

n

¢In(x; fz; y*) = L yt Mp,(x),
i= 1

Its most characteristic properties are

¢In(X) == 0, Ixi ;:: Pn/2,

¢In(X)ESpn - l , Ixl~Pn/2,

¢Jn E qPI-2)(IR).

(15)

(16)

(17)

(18 )

The basic relation (16) finally confirms that the initial condition of the
proposition is satisfied for (15) with finite support given by (J = Pn/2. The
polynomial degree of the splines in (17) also depends upon the maximal
index Pn of (7), whereas the order of differentiability is given by the minimal
leading exponent PI of (10) (see, e.g., [4, p. 197]).

Recollecting the results there exists, at first, the following
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COROLLARY. For f E C( PI) (IR) it holds true/I)r any f1 thai

./1,1*
~-,.

c OJ
(19 )

with

(20)

establishing a sampling sum with Pn terms and spline kernel ol polynomial
degree (Pn - 1) given by (15 )-( 18).

As an immediate consequence in regard to the optimal approximation
order as given in (19) and defining the "optimal linear combination" in (7)
by "smallest indices" of the splines M

Pi
(or equivalently by smallest

exponents of the sine-functions in (10), this being appropriate from the
whole construction and the side conditions involved) there holds

THEOREM 2. The optimal linear combination (7) containing m terms,
mEN, which guarantees an optimal order ol approximation ill ,. in (5) with
corresponding m-tuples ol consecutive naturals

/z0PI :=(r, r+ I,..., r+m-l)

is given (with yOPI E 7L m
\ {O} being incorporated) by

(r ~ 2) (21 )

._ (r+m-I) m 1 (-Iv(m-I)

.-m L -+. . M,.+j(x)
m i~O r.J .J

with even or odd r, i.e.,

(22)

{
2m,

r-
2m-I,

m= 1,2,3, ,

m=2, 3,4, .

The corresponding Fourier transform (10) is characterized by

do A OPI ( ) _ 1__1_ (r +m- I) v2m
'Pm.,. V - 23m3m m

+O(V2m + 2) (v-.O). (23)

To illustrate the rather unwieldly looking general formula (22) (it
definitely results in some handsome linear combinations provided r is not
too large, which will be the case in the applications), the data of the first
five optimal sampling kernels are given in Table I.



TABLE I 0
"d
.-j

Optimal order of Linear combination,
§::
>

approximation number of terms Number of samples t""
CIl

m r+m-I £?p 0pt yOpt Optimal kernel >
~
"d

2 I 2 2 I M 2(x)
t""

Z
3 2 4 (3,4) (4, -3) 4M3(x)-3M4 (x) Cl

4 2 5 (4,5) (5, -4) 5M4 (x) -4Ms(x) ~
tTl

5 3 7 (5,6,7) (21, -35,15) 21Ms(x) - 35M6(x) + 15M7(x) ::t'
Z

6 3 8 (6,7,8) (28, -48,21) 28M6 (x) -48M7(x) + 2IM8(x) tTl
t""
CIl

-..l
Vl
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It should be mentioned in this connection that the optimality of
<pfi1(x)=M2(x) is considered in [12,3]. The almost optimal combination
(s~tting Ii:= (3,5) in the corollary, thus y* = (~, -~) from (12)), namely

with 5 samples and rate ill 3 in (19) is discussed extensively III [3],
including figures.

4. CENTRAL FACTORIAL NUMBERS AND (sine x)P, pE N

The main auxiliary tool here is an utmost simple representation of the
power series expansion of all natural powers of sin x, thus of sine x, too,
and that by means of central factorial numbers. For the sake of consistency
the definition and some first properties to be used below are recollected
from [13, pp.213; 233J (a further, more complete list will be given in
[19] ).

Starting from the central factorial polynomials

x[ll] := x (x +~ - 1)(x +~ - 2)'" (x +~ - n + 1)
x[o]:= 1 (XE IR, n EN)

the central factorial numbers of 1. kind t(n, k) and of 2. kind T(n, k),
respectively, are defined by the inverse relations

11

x[Il]= L t(n,k)x\
k~O

11

x"= L T(n,k)x[kl
k~O

The basic recurrences are given by

t(n, k)= t(n-2, k-2)-1(n-2)2 t(n-2, k),

T(n, k) = T(n - 2, k - 2) + ~k2T(n - 2, k) (n, k? 2).

Some particular values as well as the sign behaviour are

t(n, 0) = T(n, 0) = 15 11,°'
t(n,k)=T(n,k)=O (n<k),

t(n, n) = T(n, n) = 1,

sgn t(2n + 1, 2k + 1)

= sgn t(2n, 2k) = (-1 )"+\ (24)

T(n, k) > 0 (O:s:; k :s:; n);

t(2n + 1, 2k) = T(2n + 1, 2k) = 0 = t(2n, 2k + 1) = T(2n, 2k + 1), (25)
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Two main properties, essentially applied below, are

k . (k)(k )11k! T( n, k) = i~0 (- 1V j 2. - j (n, kEN),

1 k (2k + p)
T(2k+p,P)=22k I ak! 2k+' ,

FO J

akO = 15 k •O'

77

(26)

(27)

(29)

(30)

(28)

k [ (2k + j - 1) .
akl=I, aki=i=~_1 a i./_[ 2k-2i >0 (O<J<k),

(3k )!
akk = (2 . 3)k k!'

These numbers (which have received meager attention [13, p. 213] so
far) enable the following

LEMMA. The Taylor series for the powers of sin x and sinc x, respectively,

are given by (i = j"=l)
• Y; 2kp!

(smx)P= I (-I)kiP+k-T(k,p)xk (XEIR,pEN)
k=p 2Pk!

Y; 22kpl
= L (_I)k . , T(p + 2k, p) x P+ 2\
k~O (p+2k).

(
X)P 00 pI

sinc -2 = L (-1 t ( ~k , T(p + 2k, p) x 2k
.

k=O p+).

One proof of (28) runs as follows ([19]; in [15] the essential last
implication is missing)

first, by the binomial theorem, and then by (26) and (24) as well. Represen
tation (29) makes use of (25). Hence (30) is immediate.

640/50/]-6
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With respect to central factorial numbers of I. kind it is worhtwhile to
note that the power series expansion for (arcsin xy, [xl;( 1, is identical
with (28) or (29), respectively, provided (the letter) T is replaced by I

(see [19]).
In connection with the importance of the central factorial numbers only

one further recent property (due to S. Ries) connecting the T(n, k) with the
moments of the B-splines may be mentioned. It is the surprisingly simple
formula

T(2k + n, n) = Ck
: n) r

x
X

2k M II (x) dx

the proof follows from (9) and (30) by equating coefficients.
Last but not least, compare [11] for another realization of a well

behaved sampling theorem involving B-splines as well as-in a decisive
way, too-central factorial numbers (of 2. kind); in this respect see
also [10].

5. PROOFS

Concerning Theorem 1, the general condition (II) as applied to (10), in
short,

(v ~ 0), (31 )

leads immediately, by using (30), to the system of linear equations

II (p;)! *
(ii) i~1 (2k + p;)! T(2k + Pi' Pi) Yi = 0

(i)
II

" ,,* - 1i....J Ii - ,

i= 1

(k = 1, 2, ..., n - 1).

(32)

The set of conditions (32), (ii) will be simplified as follows. Introducing
Stirling numbers of 1. kind s(j, k) (see, e.g., [13, p.90]),

i I

x(x-l)"'(x-j+l)= I1(.\"-k)
k~O

J

= L s(j, k) x\
k~1

s(j, j) = 1 (j EN),

in combination with (27) the coefficients of (32), (ii) are rewritten (with
general pEN, at first) as

p! 1 k 1 j . r

(2k )' T(2k + p, p) = 22kL akj (2k + .)! L s(j, r) P .
+p. I~I} r~l
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So (32), (ii) is equivalent to

k 1 j. II

L: akj (2k + .)! L s(j, r)L: P~'Yt = 0
J~! J r~1 ,~!

(l ~ k ~ n -1). (33 )

For k = 1 it is easily verified that (33) is satisfied if and only if
L;l~ I Pi'Yt =0. By induction it then follows that (32),(ii) holds if and only if

II

L: p1Yt = 0
i~1

(l ~ k ~ n -I). (34)

Thus the inhomogeneous (only a single 1 on the right-hand side) system
(32),(i), (34) for the "It (l ~i~n), in short

II

L: P7'Yi* = bk .O

i~ I

(O~k~n-I)

has to be solved. However, since all Pi are different by assumption, the
system determinant

P:= PI P2 PII n (P 1l- pJ=lO (35 )

l~v<Jl~n

p7- ! p~-l p~-l

(I~i~n)
PII

is a Vandermonde determinant with well-known value as given. Solving for
"It it follows (by the usual techniques) that

1

Pi-l 0 Pi+!

p7- 1 p~-l

=(_Ir+ll~l
p 1;,;-1

1

PII

p~-l

(-1 r+ I II
PI Pi Pi+ In I= PJ1'P

J1~1

JLoF t p7- 2 p7~!2 P7~.-12

PII

p~- 2

( _ l)i + I II

= P n PJ1' n (PJ1-Pv)
Jl=l l~v<J1~n

J1 =I=- i I-l,V '# i

(36)

since the latter determinant is again of type (35).
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Finally, by simple calculations, (36) reduces to (12), showing simul
taneously that all the (I are rationals.

The coefficient k 2n of (31) again follows from (30) using (27):

_ n n (p;)! . *
k 2n - (-I) 1~1 (2n + p;)! T(2n + P" p;) Y,

I nil n

= (-I)" 22n I~l ani (2n + j)! r~1 s(j, r) 1~1 P~(I*

I I n

= (-1)" 22n ann (3n)! sIn, n) i~1 P;'YI*' (37)

(38)
n

= (_1)n+ I fl p/"
Il= I

since, in view of (34), only the term for j = n does not vanish. Now noting
(36),

n n (_1)'+1 n

I,ytp7=I, p TIp/I' TI (P/I-p,,)'P;'
1=1 1=1 11=1 l:O:;;;v<j1::;;;n

j.l ¥- i V,1f 01= i
1 n fl

=p TI P/I I, (-I )i+ Ip;' I fl (P/I- p,,)
/1=1 i=l l::O;:v<ll::<S;n

n {I n ",/I '" I

=(-I)n+l}l,p/1 Pi~1 (_I)ll+lp;'

since the expression in brackets equals 1 by expanding the determinant of
(35) according to the last row. Combining (37) and (38) together with ann
of (27) yields

(39)

thus the constant (always negative!) of (II) has as main factor the product
of all exponents Pi of (10).

The fact that conditions (13) and (14) are all satisfied is readily read off
from (11) and the construction per se; it only has to be observed that the
essential restriction j < min {p 1, 2n} depends upon the smallest exponent PI
of the combination (10) as well as upon the exponent of the first non
constant term in the expansion (11).

As for the proof of Theorem 2, some comments: Concerning the optimal
case (for m terms), i.e., order r = 2m (m EN) and thus the particular vector
of m consecutive exponents (21), i.e.,

It = (2m, 2m + 1,... , 3m - I), P, :=2m-l +i (1 ~i~m)
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it is concluded for the vector Y* of the coefficients (12) that
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(l ~i~m) (40)

m+ 1(2 m! (3m)! m-; 1 m!
~(-1) 3(2m-l+i) m (-I) i (7)' (41)

indicating the separate (straightforward) evaluation of the numerator and
the denominator of (40). Finally, (41) yields

'+ 1 i (m)(3m - 1)
Y,* = (- 1)' 2m _ I + i i m (I ~ i~ m). (42 )

Moreover, by an argument of elementary number theory it is seen that all
i';* are integers (#0), alternating in sign. Substituting (42) into (7) delivers
(22) in form of

tP~im(x) = m (3m -I) mf 1 2( -1)J. (m ~ I) M 2m +J (x).
m J~O m + } }

Second, the same procedure as before in case (also with m terms) of odd
order r = 2m - 1 (m ~ 2) yields

(
3m-2)m-1 (-I)J (m-l)

tP~im_l(X)=m m j~O 2m-l+i i, M 2m - 1 +J (x),

so that the unified version (22) holds in any of the two cases. The constant
in the corresponding Taylor expansion (23) is built up from (39)
using (41).

6. CONCLUDING REMARKS

It should be mentioned that the above (theoretical) results have been
checked (on the CYBER 175 of the Rechenzentrum, RWTH) for various
cases (e.g., of Table I) using reasonable (small) values of OJ in (19) or in
Theorem 2. These tests emphasize that the results are of real practical
importance; at the same time they show that the (bad) constant (20) is, in
fact, (merely) a theoretical one. (A discussion of these numerical
experiments will be published elsewhere.)
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Parts of these investigations have been announced on the occasion of the
5th Aachen Colloquium on Mathematical Methods in Signal Processing,
September 1984 (see [6] for n = 2).

ACKNOWLEDGMENT

Finally, the authors would like to thank their colleague s. Ries for inspiring discussions on
the subject, in general and in detail.

REFERENCES

1. P. L. BUTZER, A survey of the Whittaker-Shannon sampling theorem and some of its
extensions, 1. Math. Res. Exposition 3 (1983), 185-212.

2. P. L. BUTZER, The Shannon sampling theorem and some of its generalizations: An over
view, in "Constructive Function Theory '81: Proc. Conf. Varna, Bulgaria, June 1981"
(BI. Sendov et aI., Eds.), pp. 258--274, Publ. House Bulg. Acad. Sci., Sofia 1983.

3. P. L. BUTZER, W. ENGELS, S. RIES. AND R. L. STENS, An implementation of the Shannon
sampling series in terms of linear and biquadratic splines, Report LAMA 264, August
1983, 23 pp.

4. P. L. BUTZER AND R. J. NESSEL. "Fourier Analysis and Approximation. I." Birkhiiuser,
Basel/Stuttgart, 1971.

5. P. L. BUTZER AND W. SPLETTSTiisSER, A sampling theorem for duration-limited functions
with error estimates. Inform. and Control 34 (1977), 55-65.

6. W. ENGELS, E. L. STARK, AND L. VOGT, Central factorial numbers and powers of the sinc
function with applications, in "5th Aachener Kolloquium, Mathematische Methoden in
der Signalverarbeitung: Proc. Conf. Aachen, September 1984" (P. L. Butzer, Ed.),
pp. 161-164, Aachen, 1984.

7. H. E. FETTls. More on the calculation of the integral 1,,(1)) = (271 I J,; (sin XI Y)" cos 1>.\ dx,
Math, Comput. 21 (1967),727-730.

8. 1. S. GRADSHTEYN AND I. M. RYZHIK, "Table of Integrals, Series and Products." Academic
Press, New York/London 1965.

9. J, R. HIGGINS, Five Short Stories about the Cardinal Series, Bull, Amer. Math. Soc. 12
(1985), 45-89.

10. S. RIES, "Approximation stetiger und unstetiger Funktionen durch verallgemeinerte
Abtastreihen," Doctoral dissertation, RWTH Aachen, 1984.

11. S. RIES, Central factorial numbers und die Implemcnticrung des Shannonschen Abtast
satzes mit Hilfe von Splines, in "5th Aachener Kolloquium, Mathematische Methoden
in der Signalverarbeitung: Proc. Conf. Aachen, September 1984," (P. L. Butzer, Ed.),
pp. 165-168, Aachen, 1984.

12. S. RIES AND R. L. STENS, Approximation by generalized sampling series, in "Constructive
Theory of Functions: Proc, Conf. Varna, Bulgaria, May/June 1984" (BI. Sendov et aI.,
Eds.), pp. 746--756, Publ. House Bulg. Acad. Sci., Sofia 1984.

13. J. RIORDAN, "Combinatorial Identities," Wiley, New York/London/Sydney, 1968.
14. 1. J. SCHOENBERG, "Cardinal Spline Interpolation," Regional Conference Series in Applied

Mathematics, Vol. 12, SIAM, Philadelphia, 1973.
15. 1. J. SCHWATT, "An Introduction to the Operations with Series," Chelsea, New York, 1962

(1924).



OPTIMAL SAMPLING KERNELS 83

16. W. SPLETTSTOSSER, On generalized sampling sums based on convolution integrals, Arch.
Elektr. Ubertr. 32 (1978), 267~275.

17. W. SPLETTSTOSSER, Error estimates for sampling approximation of non-bandlimited
functions, Math. Meth. Appl. Sci. 1 (1979), 127-137.

18. W. SPLETTSTOSSER, 75 years aliasing error in the sampling theorem, in "EUSIPCO-83,
Signal Processing: Theories and Applications: Proc. Second Europ. Signal Processing
Conf., Erlangen, September 1983" (H. W. Schussler, Ed.), pp.I-4, North-Holland,
Amsterdam/New York/Oxford, 1983.

19. E. L. STARK AND L. VOGT, Central factorial numbers: properties and applications,
submitted.

20. CH. DE LA VALLI;E POUSSIN, "Lelfons sur l'approximation des fonctions d'une variable
n':elle," Gauthier~Villars, Paris, 1919 (1952); Reprinted in "L'approximation," Chelsea,
New York 1970.


